Fingerprint

Dive into the research topics where Ari Pakman is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or
  • Bayesian Circular Regression with von Mises Quasi-Processes

    Cohen, Y., Navarro, A. K. W., Frellsen, J., Turner, R. E., Riemer, R. & Pakman, A., 22 Jan 2025, 28th International Conference on Artificial Intelligence and Statistics (AISTATS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Consistent Amortized Clustering via Generative Flow Networks

    Chelly, I., Uziel, R., Freifeld, O. & Pakman, A., 22 Jan 2025, 28th International Conference on Artificial Intelligence and Statistics (AISTATS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Super-efficient exact Hamiltonian Monte Carlo for the von Mises distribution

    Pakman, A., 1 Jan 2025, In: Applied Mathematics Letters. 159, 109284.

    Research output: Contribution to journalArticlepeer-review

    Open Access
  • A BAYESIAN NONPARAMETRIC APPROACH TO SUPER-RESOLUTION SINGLE-MOLECULE LOCALIZATION

    Gabitto, M. I., Marie-Nelly, H., Pakman, A., Pataki, A., Darzacq, X. & Jordan, M. I., 1 Dec 2021, In: Annals of Applied Statistics. 15, 4, p. 1742-1766 25 p.

    Research output: Contribution to journalArticlepeer-review

    Open Access
    5 Scopus citations
  • Estimating the Unique Information of Continuous Variables

    Pakman, A., Nejatbakhsh, A., Gilboa, D., Makkeh, A., Mazzucato, L., Wibral, M. & Schneidman, E., 1 Jan 2021, Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021. Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Wortman Vaughan, J. (eds.). Neural information processing systems foundation, p. 20295-20307 13 p. (Advances in Neural Information Processing Systems; vol. 24).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    12 Scopus citations
  • Neural clustering processes

    Pakman, A., Wang, Y., Mitelut, C., Lee, J. H. & Paninski, L., 1 Jan 2020, 37th International Conference on Machine Learning, ICML 2020. Daume, H. & Singh, A. (eds.). International Machine Learning Society (IMLS), p. 7411-7421 11 p. (37th International Conference on Machine Learning, ICML 2020; vol. PartF168147-10).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    6 Scopus citations
  • Neural Permutation Processes

    Pakman, A., Wang, Y. & Paninski, L., 1 Jan 2019, In: Proceedings of Machine Learning Research. 118

    Research output: Contribution to journalConference articlepeer-review

  • Stochastic bouncy particle sampler

    Pakman, A., Gilboa, D., Carlson, D. & Paninski, L., 1 Jan 2017, 34th International Conference on Machine Learning, ICML 2017. International Machine Learning Society (IMLS), p. 4186-4208 23 p. (34th International Conference on Machine Learning, ICML 2017; vol. 6).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    5 Scopus citations
  • Bayesian Sparse Regression Analysis Documents the Diversity of Spinal Inhibitory Interneurons

    Gabitto, M. I., Pakman, A., Bikoff, J. B., Abbott, L. F., Jessell, T. M. & Paninski, L., 24 Mar 2016, In: Cell. 165, 1, p. 220-233 14 p.

    Research output: Contribution to journalArticlepeer-review

    Open Access
    55 Scopus citations
  • Partition functions from rao-blackwellized tempered sampling

    Carlson, D. E., Stinson, P., Pakman, A. & Paninski, L., 1 Jan 2016, 33rd International Conference on Machine Learning, ICML 2016. Weinberger, K. Q. & Balcan, M. F. (eds.). International Machine Learning Society (IMLS), p. 4248-4262 15 p. (33rd International Conference on Machine Learning, ICML 2016; vol. 6).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    3 Scopus citations
  • Mitchell Prize

    Gabitto, M. (Recipient), Marie-Nelly , H. (Recipient), Pakman, A. (Recipient), Pataki, A. (Recipient), Darzacq, X. (Recipient) & Jordan, M. (Recipient), 2021

    Prize