β-cell protein kinases and the dynamics of the insulin response to glucose

Rafael Nesher, Eyal Anteby, Michael Yedovizky, Nasim Warwar, Nurit Kaiser, Erol Cerasi

Research output: Contribution to journalArticlepeer-review

82 Scopus citations

Abstract

A full biphasic insulin response is the most sensitive index for well-coupled β-cell signal transduction. While first-phase insulin response is extremely sensitive to potentiating and inhibiting modulations, full expression of second-phase response requires near maximally activated β-cell fuel metabolism. In the isolated rat pancreas, accelerated calcium entry or activation of protein kinase (PK)-A or PKC result in no insulin response in the absence of fuel metabolism. At submaximal levels of β-cell fuel secretagogue, arginine (which promotes calcium entry) or glucagon (which activates PKA) produces a small first-phase insulin response but minimal or no second-phase response; carbachol (which activates PKC and promotes calcium entry) generates biphasic insulin response in the presence of minimal fuel (3.3 mmol/l glucose). Glucagon produces full biphasic response in the presence of 10.0 mmol/l glucose, whereas arginine requires near-maximal stimulatory glucose (16.7 mmol) to produce full biphasic insulin response. Thus, PKA and PKC signal pathways potentiate primary signals generated by fuel secretagogues to induce full biphasic insulin response, while calcium recruitment alone is insufficient to potentiate primary signals generated at low levels of fuel secretagogue. We suggest that three families of PKs (calmodulin-dependent PK [CaMK], PKA, and PKC) function as distal amplifiers for stimulus-secretion coupling signals originating from fuel metabolism, as well as from incretins acting through membrane receptors, adenylate cyclase, and phospholipase C. Several isoenzymes of PKA and PKC are present in pancreatic β-cells, but the specific function of most is still undefined. Each PK isoenzyme is activated and subsequently phosphorylates its specific effector protein by binding to a highly specific anchoring protein. Some diabetes-related β-cell derangements may be linked to abnormal function of one or more PK isoenzymes. Identification and characterization of the specific function of the individual PK isoenzymes may provide the tool to improve the insulin response of the diabetic patient.

Original languageEnglish
Pages (from-to)S68-S73
JournalDiabetes
Volume51
Issue numberSUPPL.
DOIs
StatePublished - 1 Jan 2002
Externally publishedYes

ASJC Scopus subject areas

  • Internal Medicine
  • Endocrinology, Diabetes and Metabolism

Fingerprint

Dive into the research topics of 'β-cell protein kinases and the dynamics of the insulin response to glucose'. Together they form a unique fingerprint.

Cite this