TY - JOUR
T1 - π-Phase Tin and Germanium Monochalcogenide Semiconductors
T2 - An Emerging Materials System
AU - Abutbul, Ran Eitan
AU - Segev, Elad
AU - Argaman, Uri
AU - Makov, Guy
AU - Golan, Yuval
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/10/11
Y1 - 2018/10/11
N2 - Cubic π-phase monochalcogenides (MX, M = Sn, Ge; X = S, Se) are an emerging new class of materials that has recently been discovered. Here, their thermodynamic stability, progress in synthetic routes, properties, and prospective applications are reviewed. The thermodynamic stability is demonstrated through density functional theory total energy and phonon spectra calculations, which show that the π-phase polytype is stable across the monochalcogenide family. To date, only π-phase tin monochalcogenides have been observed experimentally while π-phase Ge-monochalcogenides are predicted to be stable but are yet to be experimentally realized. Various synthetic preparation protocols of π-SnS and π-SnSe are described, focusing on surfactant-assisted nanoparticle synthesis and chemical deposition of thin films from aqueous-bath compositions. These techniques provide materials with different surface energies, which are likely to play a major role in stabilizing the π-phase in nanoscale materials. The properties of this newly discovered family of semiconducting materials are discussed in comparison with their conventional orthorhombic polymorphs. These could benefit a number of photovoltaic and optoelectronic applications since, apart from being cubic, they also possess characteristic advantages, such as moderately low toxicity and natural abundance.
AB - Cubic π-phase monochalcogenides (MX, M = Sn, Ge; X = S, Se) are an emerging new class of materials that has recently been discovered. Here, their thermodynamic stability, progress in synthetic routes, properties, and prospective applications are reviewed. The thermodynamic stability is demonstrated through density functional theory total energy and phonon spectra calculations, which show that the π-phase polytype is stable across the monochalcogenide family. To date, only π-phase tin monochalcogenides have been observed experimentally while π-phase Ge-monochalcogenides are predicted to be stable but are yet to be experimentally realized. Various synthetic preparation protocols of π-SnS and π-SnSe are described, focusing on surfactant-assisted nanoparticle synthesis and chemical deposition of thin films from aqueous-bath compositions. These techniques provide materials with different surface energies, which are likely to play a major role in stabilizing the π-phase in nanoscale materials. The properties of this newly discovered family of semiconducting materials are discussed in comparison with their conventional orthorhombic polymorphs. These could benefit a number of photovoltaic and optoelectronic applications since, apart from being cubic, they also possess characteristic advantages, such as moderately low toxicity and natural abundance.
KW - binary phases
KW - density functional theory
KW - phase stability
KW - polymorphs
UR - http://www.scopus.com/inward/record.url?scp=85054446881&partnerID=8YFLogxK
U2 - 10.1002/adma.201706285
DO - 10.1002/adma.201706285
M3 - Review article
AN - SCOPUS:85054446881
SN - 0935-9648
VL - 30
JO - Advanced Materials
JF - Advanced Materials
IS - 41
M1 - 1706285
ER -