TY - JOUR
T1 - 2 H-Indazole Tautomers Stabilized by Intra- and Intermolecular Hydrogen Bonds
AU - Sigalov, Mark V.
AU - Afonin, Andrey V.
AU - Sterkhova, Irina V.
AU - Shainyan, Bagrat A.
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/6/26
Y1 - 2019/6/26
N2 - 2-[(2H-Indazol-3-yl)methylene]-1H-indene-1,3(2H)-dione 6 and (E)-2-[(2H-indazol-3-yl)methylene]-2,3-dihydro-1H-inden-1-one 7 have been synthesized. In the crystal, the NH hydrogen atom of 6 is disordered between the N(1) and N(2) atoms with the population ratio of 0.69:0.31. Molecule 7 crystallizes in two tautomeric polymorphs: 7-1H tautomer (yellow) and 7-2H tautomer (red). Both 6 and 7 form centrosymmetric dimers in the crystal with the monomeric units linked by C⋯O···H···N bifurcated hydrogen bonds in 6 and N-H···N hydrogen bonds in 7. According to 1H and 13C NMR data, in DMSO-d6 solution, the 6-1H tautomer predominates, whereas in less polar CDCl3 or CD2Cl2, the 6-2H tautomer is stabilized by a strong N-H···O⋯C intramolecular hydrogen bond. Compound 7 in dimethyl sulfoxide (DMSO) or ethanol solutions exists in the form of 7-1H and 7-2H tautomers. On the example of the 7-2H tautomer, it was shown for the first time that the 2H tautomers of 3-substituted indazoles can be stabilized by an intermolecular hydrogen bond and may remain in aprotic solvents almost indefinitely. However, in the open air or in water, fast 2H → 1H tautomerization occurs. As follows from density functional theory calculations, the high stability of the 2H form in solution is due to the formation of centrosymmetric dimers, which are more stable than the corresponding dimers of the 1H tautomer.
AB - 2-[(2H-Indazol-3-yl)methylene]-1H-indene-1,3(2H)-dione 6 and (E)-2-[(2H-indazol-3-yl)methylene]-2,3-dihydro-1H-inden-1-one 7 have been synthesized. In the crystal, the NH hydrogen atom of 6 is disordered between the N(1) and N(2) atoms with the population ratio of 0.69:0.31. Molecule 7 crystallizes in two tautomeric polymorphs: 7-1H tautomer (yellow) and 7-2H tautomer (red). Both 6 and 7 form centrosymmetric dimers in the crystal with the monomeric units linked by C⋯O···H···N bifurcated hydrogen bonds in 6 and N-H···N hydrogen bonds in 7. According to 1H and 13C NMR data, in DMSO-d6 solution, the 6-1H tautomer predominates, whereas in less polar CDCl3 or CD2Cl2, the 6-2H tautomer is stabilized by a strong N-H···O⋯C intramolecular hydrogen bond. Compound 7 in dimethyl sulfoxide (DMSO) or ethanol solutions exists in the form of 7-1H and 7-2H tautomers. On the example of the 7-2H tautomer, it was shown for the first time that the 2H tautomers of 3-substituted indazoles can be stabilized by an intermolecular hydrogen bond and may remain in aprotic solvents almost indefinitely. However, in the open air or in water, fast 2H → 1H tautomerization occurs. As follows from density functional theory calculations, the high stability of the 2H form in solution is due to the formation of centrosymmetric dimers, which are more stable than the corresponding dimers of the 1H tautomer.
UR - http://www.scopus.com/inward/record.url?scp=85070114945&partnerID=8YFLogxK
U2 - 10.1021/acs.joc.9b01021
DO - 10.1021/acs.joc.9b01021
M3 - Article
AN - SCOPUS:85070114945
SN - 0022-3263
VL - 84
SP - 9075
EP - 9086
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 14
ER -