A 2-D correlation to evaluate fuel-cladding gap thermal conductance in mixed oxide fuel elements for sodium-cooled fast reactors

J. Lavarenne, E. Bubelis, U. Davies, S. Gianfelici, S. Gicquel, J. Krepel, M. Lainet, B. Lindley, K. Mikityuk, C. Murphy, B. Perrin, W. Pfrang, A. Ponomarev, A. Schubert, E. Shwageraus, P. van Uffelen

Research output: Contribution to conferencePaperpeer-review

Abstract

The paper defines a parameterization for the fuel-cladding gap thermal conductance in a Sodium Cooled Fast Reactor. This collaboration took place within the EU-funded ESFR-SMART project. This requires use of predictive codes that have been validated where possible against experimental data. This study relied on 7 fuel performance codes thus providing confidence in the recommended correlation. A single pin model for both the inner and outer fuel was built. The fuel was burned for 2100 Effective Full Power Days, with the axial power distribution varying over time. This paper presents a comparison between the codes' results and a 2-D correlation for the heat conductance with respect to fuel burn-up and fuel rating. The fuel is broken down into nodes with specific fuel rating and burn-up, leading to the gap conductance expressed as a function of nodal fuel rating and burn-up. Data was then compiled for all the nodes, for both fissile and fertile regions, for both inner and outer fuel for all 7 codes. A 2D fit was applied to the data thus obtained. The results obtained show a general increase of heat conductance with fuel rating and burn-up, from 0.22 at 0 burn-up and 10 to 0.45 at 0 burnup and 50 and to 1.00 at 150 and 50. Some spread between codes has been noted and appears to be consistent with the spread published earlier by several code developers. Sensitivity to various modelling assumptions is under investigation. This is aided by the use of numerous fuel performance codes which enables a wide ranging and thorough sensitivity analysis.

Original languageEnglish
Pages873-880
Number of pages8
StatePublished - 1 Jan 2020
Externally publishedYes
Event14th International Nuclear Fuel Cycle Conference, GLOBAL 2019 and Light Water Reactor Fuel Performance Conference, TOP FUEL 2019 - Seattle, United States
Duration: 22 Sep 201927 Sep 2019

Conference

Conference14th International Nuclear Fuel Cycle Conference, GLOBAL 2019 and Light Water Reactor Fuel Performance Conference, TOP FUEL 2019
Country/TerritoryUnited States
CitySeattle
Period22/09/1927/09/19

Fingerprint

Dive into the research topics of 'A 2-D correlation to evaluate fuel-cladding gap thermal conductance in mixed oxide fuel elements for sodium-cooled fast reactors'. Together they form a unique fingerprint.

Cite this