A Case Study of the Integration of Ground-Based and Drone-Based Ground-Penetrating Radar (GPR) for an Archaeological Survey in Hulata (Israel): Advancements, Challenges, and Applications

Michael Frid, Vladimir Frid

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

This study delves into the fusion of ground-based and drone-based ground-penetrating radar (GPR) technologies in archaeological exploration. Set against the backdrop of the Hulata solar panel construction site in Israel, the research confronts daunting obstacles such as clayey soil, accurate detection of small objects, and the imperative of timely reporting crucial for construction management. The drone-based GPR, a testament to technological innovation, showcases remarkable adaptability to challenging terrains, dispelling doubts about electromagnetic wave decay in clayey soil. Methodologically, the study employs detailed orthophoto mapping and grid-type surveys. The correlation of the results significantly bolsters the reliability of archaeological discoveries, uncovering scattered artifacts buried approximately 1–1.5 m below the surface. Meticulous excavations validate the geophysical surveys, affirming the presence of structures constructed from boulders. The application at the Hulata site validates the adaptability of drone-based GPR in challenging terrains. It provides a swift, cost-effective, and minimally invasive alternative to traditional excavation techniques, thereby transforming the field of archaeology.

Original languageEnglish
Article number4280
JournalApplied Sciences (Switzerland)
Volume14
Issue number10
DOIs
StatePublished - 1 May 2024
Externally publishedYes

Keywords

  • archeological survey
  • drone-based GPR
  • ground-based GPR

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'A Case Study of the Integration of Ground-Based and Drone-Based Ground-Penetrating Radar (GPR) for an Archaeological Survey in Hulata (Israel): Advancements, Challenges, and Applications'. Together they form a unique fingerprint.

Cite this