@inproceedings{dc2bc443aa35442a97d43f26fea72df4,
title = "A Characterization of Semi-Supervised Adversarially Robust PAC Learnability",
abstract = "We study the problem of learning an adversarially robust predictor to test time attacks in the semi-supervised PAC model. We address the question of how many labeled and unlabeled examples are required to ensure learning. We show that having enough unlabeled data (the size of a labeled sample that a fully-supervised method would require), the labeled sample complexity can be arbitrarily smaller compared to previous works, and is sharply characterized by a different complexity measure. We prove nearly matching upper and lower bounds on this sample complexity. This shows that there is a significant benefit in semi-supervised robust learning even in the worst-case distribution-free model, and establishes a gap between supervised and semi-supervised label complexities which is known not to hold in standard non-robust PAC learning.",
author = "Idan Attias and Steve Hanneke and Yishay Mansour",
note = "Publisher Copyright: {\textcopyright} 2022 Neural information processing systems foundation. All rights reserved.; 36th Conference on Neural Information Processing Systems, NeurIPS 2022 ; Conference date: 28-11-2022 Through 09-12-2022",
year = "2022",
month = jan,
day = "1",
language = "English",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
editor = "S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh",
booktitle = "Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022",
}