TY - UNPB
T1 - A Combinatorial Game and an Efficiently Computable Shift Rule for the Prefer Max De Bruijn Sequence
AU - Svoray, Yotam
AU - Weiss, Gera
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2018
Y1 - 2018
N2 - We present a combinatorial game and propose efficiently computable optimal strategies. We then show how these strategies can be translated to efficiently computable shift-rules for the well known prefer-max and prefer-min De Bruijn sequences, in both forward and backward directions. Using these shift-rules, we provide a new proof of the well known theorem by Fredricksen, Kessler, and Maiorana on De Bruijn sequences and Lyndon words.
AB - We present a combinatorial game and propose efficiently computable optimal strategies. We then show how these strategies can be translated to efficiently computable shift-rules for the well known prefer-max and prefer-min De Bruijn sequences, in both forward and backward directions. Using these shift-rules, we provide a new proof of the well known theorem by Fredricksen, Kessler, and Maiorana on De Bruijn sequences and Lyndon words.
M3 - Preprint
BT - A Combinatorial Game and an Efficiently Computable Shift Rule for the Prefer Max De Bruijn Sequence
ER -