A Constant Approximation Algorithm for Sequential Random-Order No-Substitution k-Median Clustering

Tom Hess, Michal Moshkovitz, Sivan Sabato

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study k-median clustering under the sequential no-substitution setting. In this setting, a data stream is sequentially observed, and some of the points are selected by the algorithm as cluster centers. However, a point can be selected as a center only immediately after it is observed, before observing the next point. In addition, a selected center cannot be substituted later. We give the first algorithm for this setting that obtains a constant approximation factor on the optimal cost under a random arrival order, an exponential improvement over previous work. This is also the first constant approximation guarantee that holds without any structural assumptions on the input data. Moreover, the number of selected centers is only quasi-linear in k. Our algorithm and analysis are based on a careful cost estimation that avoids outliers, a new concept of a linear bin division, and a multiscale approach to center selection.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages3298-3308
Number of pages11
ISBN (Electronic)9781713845393
StatePublished - 1 Jan 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume5
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'A Constant Approximation Algorithm for Sequential Random-Order No-Substitution k-Median Clustering'. Together they form a unique fingerprint.

Cite this