A formal analysis of conservative update based approximate counting

Gil Einziger, Roy Friedman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

10 Scopus citations

Abstract

This paper presents a formal analysis of multiple popular approximate counting schemes that employ the conservative update policy, such as CU-Sketch and Minimal Increment Spectral Bloom Filters, under a unified framework. It is also shown that when applied to items picked from a skewed distribution, such as Zipf-like functions, the analysis follows very closely empirical results obtained through simulations. Furthermore, this paper's analysis is orders of magnitude more accurate than previously known analysis of approximate counting schemes.

Original languageEnglish
Title of host publication2015 International Conference on Computing, Networking and Communications, ICNC 2015
PublisherInstitute of Electrical and Electronics Engineers
Pages255-259
Number of pages5
ISBN (Electronic)9781479969593
DOIs
StatePublished - 26 Mar 2015
Externally publishedYes
Event2015 International Conference on Computing, Networking and Communications, ICNC 2015 - Garden Grove, United States
Duration: 16 Feb 201519 Feb 2015

Publication series

Name2015 International Conference on Computing, Networking and Communications, ICNC 2015

Conference

Conference2015 International Conference on Computing, Networking and Communications, ICNC 2015
Country/TerritoryUnited States
CityGarden Grove
Period16/02/1519/02/15

ASJC Scopus subject areas

  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'A formal analysis of conservative update based approximate counting'. Together they form a unique fingerprint.

Cite this