A Formal Metareasoning Model of Concurrent Planning and Execution

Amihay Elboher, Ava Bensoussan, Erez Karpas, Wheeler Ruml, Shahaf S. Shperberg, Eyal Shimony

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Agents that plan and act in the real world must deal with the fact that time passes as they are planning. When timing is tight, there may be insufficient time to complete the search for a plan before it is time to act. By commencing execution before search concludes, one gains time to search by making planning and execution concurrent. However, this incurs the risk of making incorrect action choices, especially if actions are irreversible. This tradeoff between opportunity and risk is the problem addressed in this paper. Our main contribution is to formally define this setting as an abstract metareasoning problem. We find that the abstract problem is intractable. However, we identify special cases that are solvable in polynomial time, develop greedy solution algorithms, and, through tests on instances derived from search problems, find several methods that achieve promising practical performance. This work lays the foundation for a principled time-aware executive that concurrently plans and executes.

Original languageEnglish
Title of host publicationAAAI-23 Technical Tracks 10
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages12427-12435
Number of pages9
ISBN (Electronic)9781577358800
DOIs
StatePublished - 27 Jun 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: 7 Feb 202314 Feb 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period7/02/2314/02/23

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'A Formal Metareasoning Model of Concurrent Planning and Execution'. Together they form a unique fingerprint.

Cite this