## Abstract

Summary & Conclusions -This paper presents a new formula for the failure-rate function (FRF), derived from a recentlyintroduced 4-parameter family of distributions. The new formula can be expressed in terms of its Cdf, is characterized by algebraic simplicity, and can replace more-complex hazard functions by using routine distribution fitting. When the actual Cdf is unknown and partial distribution-information is available (or can be extracted from sample data), new fitting procedures that use only first-degree or first- & second-degree moments are used to approximate the unknown FRF. This new approach is demonstrated for some commonly used Cdf's and shown to yield highly accurate values for the FRF. Relative to current practice, the new FRF has 4 major advantages: It does not require specification of an exact distribution, thus avoiding errors incurred by the use of a wrong model; Since estimates of only low-degree (at most first- or seconddegree) moments are required to determine the parameters of the FRF, the associated mean-square-deviations are relatively small; The new FRF can be easily adapted for use with censored data; Simple maximum likelihood estimates can be developed.

Original language | English |
---|---|

Pages (from-to) | 116-121 |

Number of pages | 6 |

Journal | IEEE Transactions on Reliability |

Volume | 46 |

Issue number | 1 |

DOIs | |

State | Published - 1 Dec 1997 |