A Generalized Linear Model of a Navigation Network

Ehud Vinepinsky, Shay Perchik, Ronen Segev

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Navigation by mammals is believed to rely on a network of neurons in the hippocampal formation, which includes the hippocampus, the medial entorhinal cortex (MEC), and additional nearby regions. Neurons in these regions represent spatial information by tuning to the position, orientation, and speed of the animal in the form of head direction cells, speed cells, grid cells, border cells, and unclassified spatially modulated cells. While the properties of single cells are well studied, little is known about the functional structure of the network in the MEC. Here, we use a generalized linear model to study the network of spatially modulated cells in the MEC. We found connectivity patterns between all spatially encoding cells and not only grid cells. In addition, the neurons’ past activity contributed to the overall activity patterns. Finally, position-modulated cells and head direction cells differed in the dependence of the activity on the history. Our results indicate that MEC neurons form a local interacting network to support spatial information representations and suggest an explanation for their complex temporal properties.

Original languageEnglish
Article number56
JournalFrontiers in Neural Circuits
Volume14
DOIs
StatePublished - 9 Sep 2020

Keywords

  • entorinal cortex
  • generalized linear model
  • grid cell
  • head direction cells
  • navigation
  • speed cells
  • theta oscillation

ASJC Scopus subject areas

  • Neuroscience (miscellaneous)
  • Sensory Systems
  • Cognitive Neuroscience
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'A Generalized Linear Model of a Navigation Network'. Together they form a unique fingerprint.

Cite this