A MEMS nano-extensometer with integrated de-amplification mechanism

A. Ya'akobovitz, S. Krylov, Y. Hanein

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Experimental exploration of strained nanostructures, such as nanowires and bio-molecules, is essential for understanding their properties. However, the ability to apply and to quantify nanometer displacements is challenging. We present a novel MEMS nano-extensometer with integrated actuation and compliant de-amplification mechanism allowing the accurate characterization of stretched nanostructures. A feasibility study was followed by fabrication and characterization of the device. The deamplified displacement was registered via optical microscopy and was processed using an improved digital image correlation algorithm to achieve nanometer measurement accuracy. Using our technique, nanoscale displacement can be determined by means of simple imaging tools. This was demonstrated by stretching suspended single wall carbon nanotubes.

Original languageEnglish
Pages (from-to)337-345
Number of pages9
JournalMicrosystem Technologies
Volume17
Issue number3
DOIs
StatePublished - 1 Mar 2011
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Hardware and Architecture
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A MEMS nano-extensometer with integrated de-amplification mechanism'. Together they form a unique fingerprint.

Cite this