Abstract
This paper presents an improved methodology for characterizing task-oriented optimal manipulator configuration, tested on a case study of selective spraying in vineyards. It compares the current approach for optimizing manipulator configurations, which relies on simulation and optimization algorithms, with an improved methodology that integrates machine learning models to enhance the optimization process. The simulation tool was developed using the Gazebo simulator and ROS software to evaluate potential robotic configurations within a simulated vineyard. Particle Swarm Optimization (PSO) was employed as the optimization algorithm in a finite solution space, with the performance measure based on maximizing the Manipulability Index of manipulator configurations reaching all targets. In the proposed methodology, XGBoost models were used to replace the simulation stage in the process and predict the manipulator’s ability to reach the target positions in the spraying task. This prediction served as decision support in selecting which configurations should be tested in the simulation, thereby reducing computational time. The integration of machine learning models in the proposed methodology resulted in an average runtime reduction of 59% while maintaining an average manipulability index score in comparison to the original approach, which did not include the XGBoost model. This methodology demonstrates significant enhancements in optimizing robot configuration for a specific task and shows strong potential for broader applications across various industries.
Original language | English |
---|---|
Article number | 58 |
Journal | Robotics |
Volume | 14 |
Issue number | 5 |
DOIs | |
State | Published - 1 May 2025 |
Keywords
- machine learning
- optimal design
- particle swarm optimization
- robotic manipulator
- simulation
- spraying task
ASJC Scopus subject areas
- Mechanical Engineering
- Control and Optimization
- Artificial Intelligence