A model for the viscoelastic behavior of polymers at finite strains

A. D. Drozdov

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

A constitutive model is derived for the isothermal nonlinear viscoelastic response in polymers, which do not possess the separability property. The model is based on the concept of transient networks, and treats a polymer as a system of nonlinear elastic springs (adaptive links), which break and emerge due to micro-Brownian motion of chains. The breakage and reformation rates for adaptive links are assumed to depend on some strain energy density. The viscoelastic behavior is described by an integral constitutive equation, where the relaxation functions satisfy partial differential equations with coefficients depending on the strain history. Adjustable parameters of the model are found by fitting experimental data for a number of polymers in tension at strains up to 400 per cent. To validate the constitutive relations, we consider loading with different strain rates, determine adjustable parameters at one rate of strains, and compare prediction of the model with observations at another rate of strains. Fair agreement between experimental data and results of numerical simulation is demonstrated when the rates of strains differ by more than a decade.

Original languageEnglish
Pages (from-to)308-322
Number of pages15
JournalArchive of Applied Mechanics
Volume68
Issue number5
DOIs
StatePublished - 1 Jan 1998

Keywords

  • Constitutive equations
  • Finite strains
  • Semicrystalline polymers
  • Separability principle
  • Viscoelasticity

Fingerprint

Dive into the research topics of 'A model for the viscoelastic behavior of polymers at finite strains'. Together they form a unique fingerprint.

Cite this