A new approach to detector array receiver performance analysis for laser satellite communication

E. Kayton, D. Marom, Shlomi Arnon

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Laser satellite communication is one of the most promising methods of communication outside the earth's atmosphere. In the continuing quest to optimise atmospheric optical wireless communication, arrays of photodetectors are replacing solitary photodetectors in receivers, affording the advantages of the small fast photodiode while effectively increasing the receiver aperture. Thus, power dispersed by atmospheric turbulence and scattering may be collected by the enlarged receiver area, and high BER, caused by low received power, can be decreased. We propose a mathematical model, which can be used to improve the data processing from detector photocurrent by incorporating thoroughly researched concepts from optical imaging theory such as atmospheric turbulence and aerosol optical transfer functions. This model forms the basis of an analytical tool, which will help in the implementation of smart detector arrays for WDM communication systems.

Original languageEnglish
Pages (from-to)118-125
Number of pages8
JournalProceedings of SPIE - The International Society for Optical Engineering
StatePublished - 1 Jan 2002


  • Detector arrays
  • Laser satellite communication
  • Optical transfer functions

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering


Dive into the research topics of 'A new approach to detector array receiver performance analysis for laser satellite communication'. Together they form a unique fingerprint.

Cite this