TY - GEN
T1 - A new paradigm for the study of corruption in different cultures
AU - Gal, Ya'Akov
AU - Rosenfeld, Avi
AU - Kraus, Sarit
AU - Gelfand, Michele
AU - An, Bo
AU - Lin, Jun
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Corruption frequently occurs in many aspects of multi-party interaction between private agencies and government employees. Past works studying corruption in a lab context have explicitly included covert or illegal activities in participants' strategy space or have relied on surveys like the Corruption Perception Index (CPI). This paper studies corruption in ecologically realistic settings in which corruption is not suggested to the players a priori but evolves during repeated interaction. We ran studies involving hundreds of subjects in three countries: China, Israel, and the United States. Subjects interacted using a four-player board game in which three bidders compete to win contracts by submitting bids in repeated auctions, and a single auctioneer determines the winner of each auction. The winning bid was paid to an external "government" entity, and was not distributed among the players. The game logs were analyzed posthoc for cases in which the auctioneer was bribed to choose a bidder who did not submit the highest bid. We found that although China exhibited the highest corruption level of the three countries, there were surprisingly more cases of corruption in the U.S. than in Israel, despite the higher PCI in Israel as compared to the U.S. We also found that bribes in the U.S. were at times excessively high, resulting in bribing players not being able to complete their winning contracts. We were able to predict the occurrence of corruption in the game using machine learning. The significance of this work is in providing a novel paradigm for investigating covert activities in the lab without priming subjects, and it represents a first step in the design of intelligent agents for detecting and reducing corruption activities in such settings.
AB - Corruption frequently occurs in many aspects of multi-party interaction between private agencies and government employees. Past works studying corruption in a lab context have explicitly included covert or illegal activities in participants' strategy space or have relied on surveys like the Corruption Perception Index (CPI). This paper studies corruption in ecologically realistic settings in which corruption is not suggested to the players a priori but evolves during repeated interaction. We ran studies involving hundreds of subjects in three countries: China, Israel, and the United States. Subjects interacted using a four-player board game in which three bidders compete to win contracts by submitting bids in repeated auctions, and a single auctioneer determines the winner of each auction. The winning bid was paid to an external "government" entity, and was not distributed among the players. The game logs were analyzed posthoc for cases in which the auctioneer was bribed to choose a bidder who did not submit the highest bid. We found that although China exhibited the highest corruption level of the three countries, there were surprisingly more cases of corruption in the U.S. than in Israel, despite the higher PCI in Israel as compared to the U.S. We also found that bribes in the U.S. were at times excessively high, resulting in bribing players not being able to complete their winning contracts. We were able to predict the occurrence of corruption in the game using machine learning. The significance of this work is in providing a novel paradigm for investigating covert activities in the lab without priming subjects, and it represents a first step in the design of intelligent agents for detecting and reducing corruption activities in such settings.
UR - http://www.scopus.com/inward/record.url?scp=84958546911&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-05579-4_32
DO - 10.1007/978-3-319-05579-4_32
M3 - Conference contribution
AN - SCOPUS:84958546911
SN - 9783319055787
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 261
EP - 268
BT - Social Computing, Behavioral-Cultural Modeling, and Prediction - 7th International Conference, SBP 2014, Proceedings
PB - Springer Verlag
T2 - 7th International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, SBP 2014
Y2 - 1 April 2014 through 4 April 2014
ER -