TY - JOUR
T1 - A novel pan-PI3K inhibitor KTC1101 synergizes with anti-PD-1 therapy by targeting tumor suppression and immune activation
AU - Peng, Xin
AU - Huang, Xin
AU - Lulu, Talal Ben
AU - Jia, Wenqing
AU - Zhang, Shaolu
AU - Cohen, Limor
AU - Huang, Shengfan
AU - Fan, Jindian
AU - Chen, Xi
AU - Liu, Shanshan
AU - Wang, Yongzhe
AU - Wang, Kailin
AU - Isoyama, Sho
AU - Dan, Shingo
AU - Wang, Feng
AU - Zhang, Zhe
AU - Elkabets, Moshe
AU - Kong, Dexin
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/12/1
Y1 - 2024/12/1
N2 - Background: Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. Methods: KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC–MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. Results: KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. Conclusion: KTC1101's dual mechanism of action—directly inhibiting tumor cell growth and dynamically enhancing the immune response— represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.
AB - Background: Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed. Here, we describe the characterization of KTC1101, a novel pan-PI3K inhibitor that simultaneously targets tumor cell proliferation and the tumor microenvironment. Our studies demonstrate that KTC1101 significantly increases the anti-PD-1 efficacy in multiple pre-clinical mouse models. Methods: KTC1101 was synthesized and characterized employing chemical synthesis, molecular modeling, Nuclear Magnetic Resonance (NMR), and mass spectrometry. Its target specificity was confirmed through the kinase assay, JFCR39 COMPARE analysis, and RNA-Seq analysis. Metabolic stability was verified via liver microsome and plasma assays, pharmacokinetics determined by LC–MS/MS, and safety profile established through acute toxicity assays to determine the LD50. The antiproliferative effects of KTC1101 were evaluated in a panel of cancer cell lines and further validated in diverse BALB/c nude mouse xenograft, NSG mouse xenograft and syngeneic mouse models. The KTC1101 treatment effect on the immune response was assessed through comprehensive RNA-Seq, flow cytometry, and immunohistochemistry, with molecular pathways investigated via Western blot, ELISA, and qRT-PCR. Results: KTC1101 demonstrated strong inhibition of cancer cell growth in vitro and significantly impeded tumor progression in vivo. It effectively modulated the Tumor Microenvironment (TME), characterized by increased infiltration of CD8+ T cells and innate immune cells. An intermittent dosing regimen of KTC1101 enhanced these effects. Notably, KTC1101 synergized with anti-PD-1 therapy, significantly boosting antitumor immunity and extending survival in preclinical models. Conclusion: KTC1101's dual mechanism of action—directly inhibiting tumor cell growth and dynamically enhancing the immune response— represents a significant advancement in cancer treatment strategies. These findings support incorporating KTC1101 into future oncologic regimens to improve the efficacy of immunotherapy combinations.
KW - CD8 T cells
KW - Immunotherapy synergy
KW - KTC1101
KW - PI3K inhibitor
KW - Tumor microenvironment
UR - http://www.scopus.com/inward/record.url?scp=85187895135&partnerID=8YFLogxK
U2 - 10.1186/s12943-024-01978-0
DO - 10.1186/s12943-024-01978-0
M3 - Article
C2 - 38486218
AN - SCOPUS:85187895135
SN - 1476-4598
VL - 23
JO - Molecular Cancer
JF - Molecular Cancer
IS - 1
M1 - 54
ER -