A peptide array pipeline for the development of Spike-ACE2 interaction inhibitors

Anand Chopra, Ali H. Shukri, Hemanta Adhikary, Valentina Lukinović, Matthew Hoekstra, Michael Cowpland, Kyle K. Biggar

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

In humans, coronaviruses are the cause of endemic illness and have been the causative agents of more severe epidemics. Most recently, SARS-CoV-2 was the causative agent of the COVID19 pandemic. Thus, there is a high interest in developing therapeutic agents targeting various stages of the coronavirus viral life cycle to disrupt viral propagation. Besides the development of small-molecule therapeutics that target viral proteases, there is also interest molecular tools to inhibit the initial event of viral attachment of the SARS-CoV-2 Spike protein to host ACE2 surface receptor. Here, we leveraged known structural information and peptide arrays to develop an in vitro peptide inhibitor of the Spike-ACE2 interaction. First, from previous co-crystal structures of the Spike-ACE2 complex, we identified an initial 24-residue long region (sequence: STIEEQAKTFLDKFNHEAEDLFYQ) on the ACE2 sequence that encompasses most of the known contact residues. Next, we scanned this 24-mer window along the ACE2 N-terminal helix and found that maximal binding to the SARS-CoV-2 receptor binding domain (CoV2-RBD) was increased when this window was shifted nine residues in the N-terminal direction. Further, by systematic permutation of this shifted ACE2-derived peptide we identified mutations to the wildtype sequence that confer increased binding of the CoV2-RBD. Among these peptides, we identified binding peptide 19 (referred to as BP19; sequence: SLVAVTAAQSTIEEQAKTFLDKFI) as an in vitro inhibitor of the Spike-ACE2 interaction with an IC50 of 2.08 ± 0.38 μM. Overall, BP19 adds to the arsenal of Spike-ACE2 inhibitors, and this study highlights the utility of systematic peptide arrays as a platform for the development of coronavirus protein inhibitors.

Original languageEnglish
Article number170898
JournalPeptides
Volume158
DOIs
StatePublished - 1 Dec 2022
Externally publishedYes

Keywords

  • ACE2
  • Peptide array
  • Peptide inhibitor
  • Spike

ASJC Scopus subject areas

  • Biochemistry
  • Physiology
  • Endocrinology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'A peptide array pipeline for the development of Spike-ACE2 interaction inhibitors'. Together they form a unique fingerprint.

Cite this