A quantitative approach to reductions in secure computation

Amos Beimel, Tal Malkin

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

Secure computation is one of the most fundamental cryptographic tasks. It is known that all functions can be computed securely in the information theoretic setting, given access to a black box for some complete function such as AND. However, without such a black box, not all functions can be securely computed. This gives rise to two types of functions, those that can be computed without a black box ("easy") and those that cannot ("hard"). However, no further distinction among the hard functions is made. In this paper, we take a quantitative approach, associating with each function f the minimal number of calls to the black box that are required for securely computing f. Such an approach was taken before, mostly in an ad-hoc manner, for specific functions f of interest. We propose a systematic study, towards a general characterization of the hierarchy according to the number of black-box calls. This approach leads to a better understanding of the inherent complexity for securely computing a given function f. Furthermore, minimizing the number of calls to the black box can lead to more efficient protocols when the calls to the black box are replaced by a secure protocol. We take a first step in this study, by considering the two-party, honestbut-curious, information-theoretic case. For this setting, we provide a complete characterization for deterministic protocols. We explore the hierarchy for randomized protocols as well, giving upper and lower bounds, and comparing it to the deterministic hierarchy. We show that for every Boolean function the largest gap between randomized and deterministic protocols is at most exponential, and there are functions which exhibit such a gap.

Original languageEnglish
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
EditorsMoni Naor
PublisherSpringer Verlag
Pages238-257
Number of pages20
ISBN (Print)3540210008, 9783540210009
DOIs
StatePublished - 1 Jan 2004

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume2951
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'A quantitative approach to reductions in secure computation'. Together they form a unique fingerprint.

Cite this