A Semi-supervised Molecular Learning Framework for Activity Cliff Estimation

Fang Wu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Machine learning (ML) enables accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Their success is based on the principle of similarity at its heart, assuming that similar molecules exhibit close properties. However, activity cliffs challenge this principle, and their presence leads to a sharp decline in the performance of existing ML algorithms, particularly graph-based methods. To overcome this obstacle under a low-data scenario, we propose a novel semi-supervised learning (SSL) method dubbed SemiMol, which employs predictions on numerous unannotated data as pseudo-signals for subsequent training. Specifically, we introduce an additional instructor model to evaluate the accuracy and trustworthiness of proxy labels because existing pseudo-labeling approaches require probabilistic outputs to reveal the model's confidence and fail to be applied in regression tasks. Moreover, we design a self-adaptive curriculum learning algorithm to progressively move the target model toward hard samples at a controllable pace. Extensive experiments on 30 activity cliff datasets demonstrate that SemiMol significantly enhances graph-based ML architectures and outpasses state-of-the-art pretraining and SSL baselines.

Original languageEnglish
Title of host publicationProceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
EditorsKate Larson
PublisherInternational Joint Conferences on Artificial Intelligence
Pages6080-6088
Number of pages9
ISBN (Electronic)9781956792041
StatePublished - 1 Jan 2024
Externally publishedYes
Event33rd International Joint Conference on Artificial Intelligence, IJCAI 2024 - Jeju, Korea, Republic of
Duration: 3 Aug 20249 Aug 2024

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
ISSN (Print)1045-0823

Conference

Conference33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Country/TerritoryKorea, Republic of
CityJeju
Period3/08/249/08/24

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'A Semi-supervised Molecular Learning Framework for Activity Cliff Estimation'. Together they form a unique fingerprint.

Cite this