Abstract
We show that any group G is contained in some sharply 2-transitive group G without a non-trivial abelian normal subgroup. This answers a long-standing open question. The involutions in the groups G that we construct have no fixed points.
Original language | English |
---|---|
Pages (from-to) | 2895-2910 |
Number of pages | 16 |
Journal | Journal of the European Mathematical Society |
Volume | 19 |
Issue number | 10 |
DOIs | |
State | Published - 1 Jan 2017 |
Keywords
- Free product
- HNN extension
- Malnormal
- Sharply 2-transitive
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics