A single facility location problem with a weighted maximin-minimax rectilinear distance

Abraham Mehrez, Zilla Sinuany-Stern, Allan Stulman

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


This paper provides an algorithm for locating a single facility in a region, where the objective function is composed of the weighted maximin and minimax rectilinear distances from a set of given demand points. This weighted objective function is applicable when the facility to be located is somewhat desirable but it should not be too close to the demand points, since it also has some undesirable effects. It has been proven in this paper, that it is enough to test for optimality all the intersection points of any two lines forming the equirectilinear distances between any pair of demand points or boundary lines of the region. The algorithm developed here tests these intersection points. The efficient set of points and their optimality range are found. This parametric form of the solution provides an optimal solution for any desired weight.

Original languageEnglish
Pages (from-to)51-60
Number of pages10
JournalComputers and Operations Research
Issue number1
StatePublished - 1 Jan 1985

ASJC Scopus subject areas

  • Computer Science (all)
  • Modeling and Simulation
  • Management Science and Operations Research


Dive into the research topics of 'A single facility location problem with a weighted maximin-minimax rectilinear distance'. Together they form a unique fingerprint.

Cite this