A solar greenhouse based on water sleeves and a movable thermal screen for use in arid regions

E. Korin, D. Pasternak, S. Cohen, H. Klotz, U. Drori

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

A cost effective solar greenhouse for growing out-of-season winter crops in semiarid regions was designed and studied experimentally. The system is based on a combination of two components: 1) water sleeves, which function as a passive element for the day-time collection of solar energy that is then used for warming, mainly during the night; and 2) a movable thermal screen, which is spread over the plants at night to reduce heat loss to the surroundings. The solar greenhouse is designed to operate as a closed system most of the winter to enable maximal solar energy storage in the sleeves. This concept was applied to melon production, as a test crop to assess whether high-quality fruit could be obtained during the winter for export to Europe. The experiment was carried out in six identical tunnels, 4 m wide, 11 m long, and 2 m high. Average increase of the water temperature in the sleeves was about 7.5°C on a clear day compared with about 4°C on a cloudy day. On a typical clear night following a sunny day air temperatures in the greenhouse at a height of 0.5 m above the ground were 6-7°C higher than outdoor temperatures, and comparable soil temperatures (at a depth of 20 cm) were 8.5-9°C higher indoors. After a cloudy day this difference in air temperature was reduced to about 5°C. On the assumption that there are 120 growing days per season, the average energy stored in the water sleeves was estimated to be equivalent to 4.2-7.5 kg/m 2 of petroleum per season.

Original languageEnglish
Title of host publicationActa Horticulturae
PublisherInternational Society for Horticultural Science
Pages221-227
Number of pages7
ISBN (Print)9789066059184
DOIs
StatePublished - 1 Dec 1996

Publication series

NameActa Horticulturae
Volume434
ISSN (Print)0567-7572

ASJC Scopus subject areas

  • Horticulture

Fingerprint

Dive into the research topics of 'A solar greenhouse based on water sleeves and a movable thermal screen for use in arid regions'. Together they form a unique fingerprint.

Cite this