TY - GEN
T1 - Accelerated magnetic resonance imaging by adversarial neural network
AU - Shitrit, Ohad
AU - Riklin Raviv, Tammy
N1 - Publisher Copyright:
© Springer International Publishing AG 2017.
PY - 2017/1/1
Y1 - 2017/1/1
N2 - A main challenge in Magnetic Resonance Imaging (MRI) for clinical applications is speeding up scan time. Beyond the improvement of patient experience and the reduction of operational costs, faster scans are essential for time-sensitive imaging, where target movement is unavoidable, yet must be significantly lessened, e.g., fetal MRI, cardiac cine, and lungs imaging. Moreover, short scan time can enhance temporal resolution in dynamic scans, such as functional MRI or dynamic contrast enhanced MRI. Current imaging methods facilitate MRI acquisition at the price of lower spatial resolution and costly hardware solutions. We introduce a practical, software-only framework, based on deep learning, for accelerating MRI scan time allows maintaining good quality imaging. This is accomplished by partial MRI sampling, while using an adversarial neural network to estimate the missing samples. The inter-play between the generator and the discriminator networks enables the introduction of an adversarial cost in addition to a fidelity loss used for optimizing the peak signal-to-noise ratio (PSNR). Promising image reconstruction results are obtained for 1.5T MRI where only 52% of the original data are used.
AB - A main challenge in Magnetic Resonance Imaging (MRI) for clinical applications is speeding up scan time. Beyond the improvement of patient experience and the reduction of operational costs, faster scans are essential for time-sensitive imaging, where target movement is unavoidable, yet must be significantly lessened, e.g., fetal MRI, cardiac cine, and lungs imaging. Moreover, short scan time can enhance temporal resolution in dynamic scans, such as functional MRI or dynamic contrast enhanced MRI. Current imaging methods facilitate MRI acquisition at the price of lower spatial resolution and costly hardware solutions. We introduce a practical, software-only framework, based on deep learning, for accelerating MRI scan time allows maintaining good quality imaging. This is accomplished by partial MRI sampling, while using an adversarial neural network to estimate the missing samples. The inter-play between the generator and the discriminator networks enables the introduction of an adversarial cost in addition to a fidelity loss used for optimizing the peak signal-to-noise ratio (PSNR). Promising image reconstruction results are obtained for 1.5T MRI where only 52% of the original data are used.
UR - http://www.scopus.com/inward/record.url?scp=85029798487&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-67558-9_4
DO - 10.1007/978-3-319-67558-9_4
M3 - Conference contribution
AN - SCOPUS:85029798487
SN - 9783319675572
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 30
EP - 38
BT - Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support - 3rd International Workshop, DLMIA 2017 and 7th International Workshop, ML-CDS 2017 Held in Conjunction with MICCAI 2017, Proceedings
A2 - Arbel, Tal
A2 - Cardoso, M. Jorge
PB - Springer Verlag
T2 - 3rd International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2017 and 7th International Workshop on Multimodal Learning for Clinical Decision Support, ML-CDS 2017 held in Conjunction with 20th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2017
Y2 - 14 September 2017 through 14 September 2017
ER -