TY - GEN
T1 - Accelerating Motion Planning via Optimal Transport
AU - Le, An T.
AU - Chalvatzaki, Georgia
AU - Biess, Armin
AU - Peters, Jan
N1 - Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - Motion planning is still an open problem for many disciplines, e.g., robotics, autonomous driving, due to their need for high computational resources that hinder real-time, efficient decision-making. A class of methods striving to provide smooth solutions is gradient-based trajectory optimization. However, those methods usually suffer from bad local minima, while for many settings, they may be inapplicable due to the absence of easy-to-access gradients of the optimization objectives. In response to these issues, we introduce Motion Planning via Optimal Transport (MPOT)-a gradient-free method that optimizes a batch of smooth trajectories over highly nonlinear costs, even for high-dimensional tasks, while imposing smoothness through a Gaussian Process dynamics prior via the planning-as-inference perspective. To facilitate batch trajectory optimization, we introduce an original zero-order and highly-parallelizable update rule-the Sinkhorn Step, which uses the regular polytope family for its search directions. Each regular polytope, centered on trajectory waypoints, serves as a local cost-probing neighborhood, acting as a trust region where the Sinkhorn Step “transports” local waypoints toward low-cost regions. We theoretically show that Sinkhorn Step guides the optimizing parameters toward local minima regions of non-convex objective functions. We then show the efficiency of MPOT in a range of problems from low-dimensional point-mass navigation to high-dimensional whole-body robot motion planning, evincing its superiority compared to popular motion planners, paving the way for new applications of optimal transport in motion planning.
AB - Motion planning is still an open problem for many disciplines, e.g., robotics, autonomous driving, due to their need for high computational resources that hinder real-time, efficient decision-making. A class of methods striving to provide smooth solutions is gradient-based trajectory optimization. However, those methods usually suffer from bad local minima, while for many settings, they may be inapplicable due to the absence of easy-to-access gradients of the optimization objectives. In response to these issues, we introduce Motion Planning via Optimal Transport (MPOT)-a gradient-free method that optimizes a batch of smooth trajectories over highly nonlinear costs, even for high-dimensional tasks, while imposing smoothness through a Gaussian Process dynamics prior via the planning-as-inference perspective. To facilitate batch trajectory optimization, we introduce an original zero-order and highly-parallelizable update rule-the Sinkhorn Step, which uses the regular polytope family for its search directions. Each regular polytope, centered on trajectory waypoints, serves as a local cost-probing neighborhood, acting as a trust region where the Sinkhorn Step “transports” local waypoints toward low-cost regions. We theoretically show that Sinkhorn Step guides the optimizing parameters toward local minima regions of non-convex objective functions. We then show the efficiency of MPOT in a range of problems from low-dimensional point-mass navigation to high-dimensional whole-body robot motion planning, evincing its superiority compared to popular motion planners, paving the way for new applications of optimal transport in motion planning.
UR - http://www.scopus.com/inward/record.url?scp=85191148935&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85191148935
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
A2 - Oh, A.
A2 - Neumann, T.
A2 - Globerson, A.
A2 - Saenko, K.
A2 - Hardt, M.
A2 - Levine, S.
PB - Neural information processing systems foundation
T2 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
Y2 - 10 December 2023 through 16 December 2023
ER -