Acetaminophen hepatotoxicity: Is there a role for prostaglandin synthesis?

Zvi Ben-Zvi, Batya Weissman-Teitellman, Shiffra Katz, Abraham Danon

Research output: Contribution to journalArticlepeer-review

15 Scopus citations


The hepatotoxicity of acetaminophen (APAP) overdose depends on metabolic activation to a toxic reactive metabolite via hepatic mixed function oxidase. In vitro studies have indicated that APAP may also be cooxidized by prostaglandin H synthetase. The present experiments were designed to assess the possible contribution of hepatic prostaglandin synthesis to APAP toxicity. Adult fed male mice were overdosed with 400 mg APAP/kg. Liver toxicity was estimated by measurement of serum transaminases. Hypertonic xylitol or sodium chloride (2250 mOsm/l), administered intragastrically to stimulate prostaglandin synthesis, increased APAP toxicity. By contrast, the cyclooxygenase inhibiting drugs aspirin (at 25 mg/kg) and indomethacin (at 10 mg/kg) protected against APAP-induced toxicity. APAP kinetics were not affected by hypertonic xylitol or indomethacin, nor were hepatic glutathione levels in overdosed mice. Imidazole, a nonspecific thromboxane synthetase inhibitor, also protected overdosed mice. This drug prolonged hexobarbital sleeping time and prevented the depletion of hepatic glutathione that followed APAP intoxication. Thus, the data support the conclusion that APAP-induced hepatotoxicity may be modulated not only by inhibition of cytochrome P450 mediated oxidation, but also by controlling hepatic cyclooxygenase activity.

Original languageEnglish
Pages (from-to)299-304
Number of pages6
JournalArchives of Toxicology
Issue number4
StatePublished - 1 Jun 1990


  • Acetaminophen (paracetamol, APAP)
  • Hepatotoxicity
  • Prostaglandins

ASJC Scopus subject areas

  • Toxicology
  • Health, Toxicology and Mutagenesis


Dive into the research topics of 'Acetaminophen hepatotoxicity: Is there a role for prostaglandin synthesis?'. Together they form a unique fingerprint.

Cite this