Abstract
Background: In Alzheimer's disease (AD), cholinergic neurons are particularly vulnerable for as yet unclear reasons. Here, we report that modified composition, localization and properties of alternative splice variants encoding the acetylcholine-hydrolyzing enzyme acetylcholinesterase (AChE) may be variably involved in disease progression or in systemic efforts to attenuate its progression. Objective: The purpose of this study was to explore the implications for AD of the cellular and biochemical properties of the various AChE proteins, differing in their N and C termini. Methods: We have used cell transfection with genetically engineered vectors as well as microinjection to overexpress specific AChE variants and explore the consequences to cellular well-being and survival. Additionally, we employed highly purified recombinant AChE-R and AChE-S to explore putative interactions with the AD β-amyloid peptide. Results: Our findings demonstrate distinct, and in certain cases inverse cell fate outcome under enforced expression of the human N- and C-terminally modified AChE variants, all of which have similar enzymatic activities. Conclusion: The N-terminal extension in conjunction with the primary helical C-terminal peptide of 'tailed' AChE-S facilitates, whereas the shorter, naturally unfolded C-terminus of the stress-induced AChE-R variant attenuates Alzheimer's pathology.
Original language | English |
---|---|
Pages (from-to) | 60-63 |
Number of pages | 4 |
Journal | Neurodegenerative Diseases |
Volume | 7 |
Issue number | 1-3 |
DOIs | |
State | Published - 1 Apr 2010 |
Externally published | Yes |
Keywords
- Acetylcholinesterase
- Alzheimer's disease
- Amyloid
- Apoptosis
- Caspases
- Neuroinflammation
ASJC Scopus subject areas
- Neurology
- Clinical Neurology