TY - JOUR
T1 - Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation
AU - Hill, Jeremy D.
AU - Zuluaga-Ramirez, Viviana
AU - Gajghate, Sachin
AU - Winfield, Malika
AU - Sriram, Uma
AU - Rom, Slava
AU - Persidsky, Yuri
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2019/2/1
Y1 - 2019/2/1
N2 - New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. NSC differentiation and neurogenesis was determined via immunofluorescence and flow cytometric analysis of NSC markers (Nestin, Sox2, DCX, S100β, βIII Tubulin, GFAP). GPR55 agonist treatment protected against IL-1β induced reductions in neurogenesis rates. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 and GPR55−/− mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4 µg/kg/day). Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses by GPR55−/− animals manifesting in a prolonged inflammatory response (IL-1β, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.
AB - New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. NSC differentiation and neurogenesis was determined via immunofluorescence and flow cytometric analysis of NSC markers (Nestin, Sox2, DCX, S100β, βIII Tubulin, GFAP). GPR55 agonist treatment protected against IL-1β induced reductions in neurogenesis rates. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 and GPR55−/− mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4 µg/kg/day). Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses by GPR55−/− animals manifesting in a prolonged inflammatory response (IL-1β, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.
KW - Cannabinoid
KW - GPR55
KW - Hippocampus
KW - Inflammation
KW - Neural stem cell
KW - Neurogenesis
KW - Neuroprotection
UR - http://www.scopus.com/inward/record.url?scp=85057015929&partnerID=8YFLogxK
U2 - 10.1016/j.bbi.2018.11.017
DO - 10.1016/j.bbi.2018.11.017
M3 - Article
C2 - 30465881
AN - SCOPUS:85057015929
SN - 0889-1591
VL - 76
SP - 165
EP - 181
JO - Brain, Behavior, and Immunity
JF - Brain, Behavior, and Immunity
ER -