Abstract
O-acetylserine (thiol) lyases (OASTLs) are evolutionarily conserved proteins among many prokaryotes and eukaryotes that perform sulfur acquisition and synthesis of cysteine. A mutation in the cytosolic OASTL-A1 protein ONSET OF LEAF DEATH3 (OLD3) was previously shown to reduce the OASTL activity of the old3-1 protein in vitro and cause auto-necrosis in specific Arabidopsis accessions. Here we investigated why a mutation in this protein causes auto-necrosis in some but not other accessions. The auto-necrosis was found to depend on Recognition of Peronospora Parasitica 1 (RPP1)-like disease resistance R gene(s) from an evolutionarily divergent R gene cluster that is present in Ler-0 but not the reference accession Col-0. RPP1-like gene(s) show a negative epistatic interaction with the old3-1 mutation that is not linked to reduced cysteine biosynthesis. Metabolic profiling and transcriptional analysis further indicate that an effector triggered-like immune response and metabolic disorder are associated with auto-necrosis in old3-1 mutants, probably activated by an RPP1-like gene. However, the old3-1 protein in itself results in largely neutral changes in primary plant metabolism, stress defence and immune responses. Finally, we showed that lack of a functional OASTL-A1 results in enhanced disease susceptibility against infection with virulent and non-virulent Pseudomonas syringae pv. tomato DC3000 strains. These results reveal an interaction between the cytosolic OASTL and components of plant immunity.
Original language | English |
---|---|
Pages (from-to) | 118-130 |
Number of pages | 13 |
Journal | Plant Journal |
Volume | 73 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jan 2013 |
Externally published | Yes |
Keywords
- Auto-necrosis
- Cysteine biosynthesis
- Disease resistance
- Innate immunity
- OASTL-A1
- RPP1
ASJC Scopus subject areas
- Genetics
- Plant Science
- Cell Biology