Abstract
We propose a pool-based non-parametric active learning algorithm for general metric spaces, called MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend on the noisy-margin properties of the input sample, and are competitive with those obtained by previously proposed passive learners. We prove that the label complexity of MARMANN is significantly lower than that of any passive learner with similar error guarantees. Our algorithm is based on a generalized sample compression scheme and a new label-efficient active model-selection procedure.
Original language | English |
---|---|
Pages (from-to) | 856-864 |
Number of pages | 9 |
Journal | Advances in Neural Information Processing Systems |
State | Published - 1 Jan 2016 |
Event | 30th Annual Conference on Neural Information Processing Systems, NIPS 2016 - Barcelona, Spain Duration: 5 Dec 2016 → 10 Dec 2016 |
ASJC Scopus subject areas
- Computer Networks and Communications
- Information Systems
- Signal Processing