Advanced cell-level control for extending electric vehicle battery pack lifetime

M. Muneeb Ur Rehman, Fan Zhang, Michael Evzelman, Regan Zane, Kandler Smith, Dragan Maksimovic

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

A cell-level control approach for electric vehicle battery packs is presented that enhances traditional battery balancing goals to not only provide cell balancing but also achieve significant pack lifetime extension. These goals are achieved by applying a new life-prognostic based control algorithm that biases individual cells differently based on their state of charge, capacity and internal resistance. The proposed life control approach reduces growth in capacity mismatch typically seen in large battery packs over life while optimizing usable energy of the pack. The result is a longer lifetime of the overall pack and a more homogeneous distribution of cell capacities at the end of the first life for vehicle applications. Active cell balancing circuits and associated algorithms are used to accomplish the cell-level life extension objectives. This paper presents details of the cell-level control approach, selection and design of the active balancing system, and low-complexity state-of-charge, capacity, and series-resistance estimation algorithms. A laboratory prototype is used to demonstrate the proposed control approach. The prototype consists of twenty-one 25 Ah Panasonic lithium-Ion NMC battery cells from a commercial electric vehicle and an integrated BMS/DC-DC system that provides 750 W to the vehicle low voltage auxiliary loads.

Original languageEnglish
Title of host publicationECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PublisherInstitute of Electrical and Electronics Engineers
ISBN (Electronic)9781509007370
DOIs
StatePublished - 1 Jan 2016
Externally publishedYes
Event2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016 - Milwaukee, United States
Duration: 18 Sep 201622 Sep 2016

Publication series

NameECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings

Conference

Conference2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
Country/TerritoryUnited States
CityMilwaukee
Period18/09/1622/09/16

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering
  • Energy Engineering and Power Technology
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Advanced cell-level control for extending electric vehicle battery pack lifetime'. Together they form a unique fingerprint.

Cite this