Advances in Liquid Atomization via Flash Boiling—A Global Overview

Tali Bar-Kohany, Merav Arogeti, Avihai Malka, Eran Sher

Research output: Contribution to journalReview articlepeer-review

1 Scopus citations

Abstract

A wide range of recent applications require high-quality sprays that are characterized by extremely small-sized droplets, a narrow droplet size distribution, and a short breakup length. Fuel injection systems in propulsion units, energy storage, medical implementations, printings, and coatings are just a few examples. Flash-boiling atomization is a unique method that was extensively developed during the past two to three decades and has been proven to generate high-quality demanded sprays. In flash-boiling atomization, the liquid is forced to reach a metastable superheated state by either rapid heating or rapid pressure drop, where vapor bubbles nucleate, become fast-growing, and subsequently break down the liquid into a fine spray in a very short time. This present article focuses on flash-boiling atomization via rapid depressurization, which is presently more relevant to energy systems. The field of flash-boiling atomization has seen rapid growth and popularity in the past two decades. The aim of this article is to quantitatively portray the landscape and evolutionary trajectory of flash-boiling atomization research and applications and to detect new research frontiers and emerging trends in the literature on flash-boiling atomization. We briefly review the basic theories of the flash-boiling atomization mechanism present a comprehensive overview of the field, from its birth in approximately the 1970s to the present, and provide a database comprising 386 articles published on the topic of flash-boiling atomization. We visualize the intellectual structure of flash-boiling atomization research and applications and track its evolvement over the past five decades, thus providing a global overview and a comprehensive understanding of the development of flash-boiling atomization research and emerging applications.

Original languageEnglish
Article number6763
JournalEnergies
Volume16
Issue number19
DOIs
StatePublished - 1 Oct 2023
Externally publishedYes

Keywords

  • atomization
  • cavitation
  • depressurization
  • flash boiling
  • fuel injection
  • spray

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Fuel Technology
  • Engineering (miscellaneous)
  • Energy Engineering and Power Technology
  • Energy (miscellaneous)
  • Control and Optimization
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Advances in Liquid Atomization via Flash Boiling—A Global Overview'. Together they form a unique fingerprint.

Cite this