Algebraic methods for chromatic polynomials

N. L. Biggs, M. H. Klin, P. Reinfeld

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

In this paper we discuss the chromatic polynomial of a 'bracelet', when the base graph is a complete graph Kb and arbitrary links L between the consecutive copies are allowed. If there are n copies of the base graph the resulting graph will be denoted by Ln(b). We show that the chromatic polynomial of Ln(b) can be written in the form P(Ln (b);k)=∑ℓ=0bπ⊢ℓmπ(k)tr (NLπ)n. Here the notation π⊢ℓ means that π is a partition of ℓ, and mπ(k) is a polynomial that does not depend on L. The square matrix NLπ has size (bnπ, where nπ is the degree of the representation Rπ of Sym associated with π.We derive an explicit formula for mπ(k) and describe a method for calculating the matrices NL π. Examples are given. Finally, we discuss the application of these results to the problem of locating the chromatic zeros.

Original languageEnglish
Pages (from-to)147-160
Number of pages14
JournalEuropean Journal of Combinatorics
Volume25
Issue number2
DOIs
StatePublished - 1 Feb 2004

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics

Fingerprint

Dive into the research topics of 'Algebraic methods for chromatic polynomials'. Together they form a unique fingerprint.

Cite this