TY - GEN
T1 - All-Cause Mortality Prediction in T2D Patients
AU - Novitski, Pavel
AU - Cohen, Cheli Melzer
AU - Karasik, Avraham
AU - Shalev, Varda
AU - Hodik, Gabriel
AU - Moskovitch, Robert
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020/1/1
Y1 - 2020/1/1
N2 - Mortality in elderly population having type II diabetes (T2D) can be prevented sometimes through intervention. For that risk assessment can be performed through predictive modeling. This study is part of a collaboration with Maccabi Healthcare Services’ Electronic Health Records (EHR) data, that consists on up to 10 years of 18,000 elderly T2D patients. EHR data is typically heterogeneous and sparse, and for that the use of temporal abstraction and time intervals mining to discover frequent time-interval related patterns (TIRPs) are employed, which then are used as features for a predictive model. However, while the temporal relations between symbolic time intervals in a TIRP are discovered, the temporal relations between TIRPs are not represented. In this paper we introduce a novel TIRPs based patient data representation called Integer-TIRP (iTirp), in which the TIRPs become channels represented by values representing the number of TIRP’s instances that were detected. Then, the iTirps representation is fed into a Deep Learning Architecture, which can learn this kind of sequential relations, using a Recurrent Neural Network (RNN) or a Convolutional Neural Network (CNN). Finally, we introduce a predictive model that consists of a committee, in which two inputs were concatenated, a raw data and iTirps data. Our results indicate that iTirps based models, showed superior performance compared to raw data representation and the committee showed even better results, this by taking advantage of each representations.
AB - Mortality in elderly population having type II diabetes (T2D) can be prevented sometimes through intervention. For that risk assessment can be performed through predictive modeling. This study is part of a collaboration with Maccabi Healthcare Services’ Electronic Health Records (EHR) data, that consists on up to 10 years of 18,000 elderly T2D patients. EHR data is typically heterogeneous and sparse, and for that the use of temporal abstraction and time intervals mining to discover frequent time-interval related patterns (TIRPs) are employed, which then are used as features for a predictive model. However, while the temporal relations between symbolic time intervals in a TIRP are discovered, the temporal relations between TIRPs are not represented. In this paper we introduce a novel TIRPs based patient data representation called Integer-TIRP (iTirp), in which the TIRPs become channels represented by values representing the number of TIRP’s instances that were detected. Then, the iTirps representation is fed into a Deep Learning Architecture, which can learn this kind of sequential relations, using a Recurrent Neural Network (RNN) or a Convolutional Neural Network (CNN). Finally, we introduce a predictive model that consists of a committee, in which two inputs were concatenated, a raw data and iTirps data. Our results indicate that iTirps based models, showed superior performance compared to raw data representation and the committee showed even better results, this by taking advantage of each representations.
KW - Deep Learning
KW - Pattern mining
KW - Temporal data prediction
UR - http://www.scopus.com/inward/record.url?scp=85092229093&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59137-3_1
DO - 10.1007/978-3-030-59137-3_1
M3 - Conference contribution
AN - SCOPUS:85092229093
SN - 9783030591366
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 3
EP - 13
BT - Artificial Intelligence in Medicine - 18th International Conference on Artificial Intelligence in Medicine, AIME 2020, Proceedings
A2 - Michalowski, Martin
A2 - Moskovitch, Robert
PB - Springer Science and Business Media Deutschland GmbH
T2 - 18th International Conference on Artificial Intelligence in Medicine, AIME 2020
Y2 - 25 August 2020 through 28 August 2020
ER -