Allostery through DNA drives phenotype switching

Gabriel Rosenblum, Nadav Elad, Haim Rozenberg, Felix Wiggers, Jakub Jungwirth, Hagen Hofmann

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

Allostery is a pervasive principle to regulate protein function. Growing evidence suggests that also DNA is capable of transmitting allosteric signals. Yet, whether and how DNA-mediated allostery plays a regulatory role in gene expression remained unclear. Here, we show that DNA indeed transmits allosteric signals over long distances to boost the binding cooperativity of transcription factors. Phenotype switching in Bacillus subtilis requires an all-or-none promoter binding of multiple ComK proteins. We use single-molecule FRET to demonstrate that ComK-binding at one promoter site increases affinity at a distant site. Cryo-EM structures of the complex between ComK and its promoter demonstrate that this coupling is due to mechanical forces that alter DNA curvature. Modifications of the spacer between sites tune cooperativity and show how to control allostery, which allows a fine-tuning of the dynamic properties of genetic circuits.

Original languageEnglish
Article number2967
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - 1 Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Allostery through DNA drives phenotype switching'. Together they form a unique fingerprint.

Cite this