TY - UNPB
T1 - Almost Public Quantum Coins
AU - Behera, Amit
AU - Sattath, Or
N1 - DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2020/2/27
Y1 - 2020/2/27
N2 - In a quantum money scheme, a bank can issue money that users cannot counterfeit. Similar to bills of paper money, most quantum money schemes assign a unique serial number to each money state, thus potentially compromising the privacy of the users of quantum money. However in a quantum coins scheme, just like the traditional currency coin scheme, all the money states are exact copies of each other, providing a better level of privacy for the users. A quantum money scheme can be private, i.e., only the bank can verify the money states, or public, meaning anyone can verify. In this work, we propose a way to lift any private quantum coin scheme -- which is known to exist based on the existence of one-way functions, due to Ji, Liu, and Song (CRYPTO'18) -- to a scheme that closely resembles a public quantum coin scheme. Verification of a new coin is done by comparing it to the coins the user already possesses, by using a projector on to the symmetric subspace. No public coin scheme was known prior to this work. It is also the first construction that is very close to a public quantum money scheme and is provably secure based on standard assumptions. The lifting technique when instantiated with the private quantum coins scheme, due to Mosca and Stebila 2010, gives rise to the first construction that is very close to an inefficient unconditionally secure public quantum money scheme.
AB - In a quantum money scheme, a bank can issue money that users cannot counterfeit. Similar to bills of paper money, most quantum money schemes assign a unique serial number to each money state, thus potentially compromising the privacy of the users of quantum money. However in a quantum coins scheme, just like the traditional currency coin scheme, all the money states are exact copies of each other, providing a better level of privacy for the users. A quantum money scheme can be private, i.e., only the bank can verify the money states, or public, meaning anyone can verify. In this work, we propose a way to lift any private quantum coin scheme -- which is known to exist based on the existence of one-way functions, due to Ji, Liu, and Song (CRYPTO'18) -- to a scheme that closely resembles a public quantum coin scheme. Verification of a new coin is done by comparing it to the coins the user already possesses, by using a projector on to the symmetric subspace. No public coin scheme was known prior to this work. It is also the first construction that is very close to a public quantum money scheme and is provably secure based on standard assumptions. The lifting technique when instantiated with the private quantum coins scheme, due to Mosca and Stebila 2010, gives rise to the first construction that is very close to an inefficient unconditionally secure public quantum money scheme.
KW - Quantum Physics
KW - Computer Science - Cryptography and Security
U2 - 10.48550/arXiv.2002.12438
DO - 10.48550/arXiv.2002.12438
M3 - Preprint
BT - Almost Public Quantum Coins
ER -