TY - UNPB
T1 - Amended Cross Entropy Cost
T2 - Framework For Explicit Diversity Encouragement.
AU - Shoham, Ron
AU - Permuter, Haim H.
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2020/7/16
Y1 - 2020/7/16
N2 - Cross Entropy (CE) has an important role in machine learning and, in particular, in neural networks. It is commonly used in neural networks as the cost between the known distribution of the label and the Softmax/Sigmoid output. In this paper we present a new cost function called the Amended Cross Entropy (ACE). Its novelty lies in its affording the capability to train multiple classifiers while explicitly controlling the diversity between them. We derived the new cost by mathematical analysis and “reverse engineering” of the way we wish the gradients to behave, and produced a tailor-made, elegant and intuitive cost function to achieve the desired result. This process is similar to the way that CE cost is picked as a cost function for the Softmax/Sigmoid classifiers for obtaining linear derivatives. By choosing the optimal diversity factor we produce an ensemble which yields better results than the vanilla one. We demonstrate two potential usages of this outcome, and present empirical results. Our method works for classification problems analogously to Negative Correlation Learning (NCL) for regression problems.
AB - Cross Entropy (CE) has an important role in machine learning and, in particular, in neural networks. It is commonly used in neural networks as the cost between the known distribution of the label and the Softmax/Sigmoid output. In this paper we present a new cost function called the Amended Cross Entropy (ACE). Its novelty lies in its affording the capability to train multiple classifiers while explicitly controlling the diversity between them. We derived the new cost by mathematical analysis and “reverse engineering” of the way we wish the gradients to behave, and produced a tailor-made, elegant and intuitive cost function to achieve the desired result. This process is similar to the way that CE cost is picked as a cost function for the Softmax/Sigmoid classifiers for obtaining linear derivatives. By choosing the optimal diversity factor we produce an ensemble which yields better results than the vanilla one. We demonstrate two potential usages of this outcome, and present empirical results. Our method works for classification problems analogously to Negative Correlation Learning (NCL) for regression problems.
U2 - https://doi.org/10.48550/arXiv.2007.08140
DO - https://doi.org/10.48550/arXiv.2007.08140
M3 - Preprint
VL - abs/2007.08140
SP - 1
EP - 10
BT - Amended Cross Entropy Cost
ER -