Abstract
The development of an effective molecular catalyst to reduce hydrazine efficiently to ammonia using a suitable reductant and proton source is demanding. Herein, an unprecedented air-stable, phosphine-free ruthenium complex is used as a potent catalyst for hydrazine hydrate reduction to generate ammonia using SmI2 and water under ambient reaction conditions. Maximizing the flow of electrons from the reductant to the hydrazine hydrate via the metal centre results in a greater yield of ammonia while minimizing the evolution of H2 gas as a competing product.
Original language | English |
---|---|
Pages (from-to) | 416-419 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 60 |
Issue number | 4 |
DOIs | |
State | Published - 1 Dec 2023 |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Catalysis
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry