TY - GEN
T1 - An algorithmic study of fully dynamic independent sets for map labeling
AU - Bhore, Sujoy
AU - Li, Guangping
AU - Nöllenburg, Martin
N1 - Publisher Copyright:
© Sujoy Bhore, Guangping Li, and Martin Nöllenburg
PY - 2020/8/1
Y1 - 2020/8/1
N2 - Map labeling is a classical problem in cartography and geographic information systems (GIS) that asks to place labels for area, line, and point features, with the goal to select and place the maximum number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we study the maximal independent set (MIS) and maximum independent set (Max-IS) problems on fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types – (i) uniform height and width and (ii) uniform height and arbitrary width; both settings can be modeled as rectangle intersection graphs. We present the first deterministic algorithm for maintaining a MIS (and thus a 4-approximate Max-IS) of a dynamic set of uniform rectangles with amortized sub-logarithmic update time. This breaks the natural barrier of Ω(∆) update time (where ∆ is the maximum degree in the graph) for vertex updates presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and provide a series of deterministic dynamic approximation schemes. For uniform rectangles, we first give an algorithm that maintains a 4-approximate Max-IS with O(1) update time. In a subsequent algorithm, we establish the trade-off between approximation quality 2(1 + k1 ) and update time O(k2 log n), for k ∈ N. We conclude with an algorithm that maintains a 2-approximate Max-IS for dynamic sets of unit-height and arbitrary-width rectangles with O(ω log n) update time, where ω is the maximum size of an independent set of rectangles stabbed by any horizontal line. We have implemented our algorithms and report the results of an experimental comparison exploring the trade-off between solution quality and update time for synthetic and real-world map labeling instances.
AB - Map labeling is a classical problem in cartography and geographic information systems (GIS) that asks to place labels for area, line, and point features, with the goal to select and place the maximum number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we study the maximal independent set (MIS) and maximum independent set (Max-IS) problems on fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types – (i) uniform height and width and (ii) uniform height and arbitrary width; both settings can be modeled as rectangle intersection graphs. We present the first deterministic algorithm for maintaining a MIS (and thus a 4-approximate Max-IS) of a dynamic set of uniform rectangles with amortized sub-logarithmic update time. This breaks the natural barrier of Ω(∆) update time (where ∆ is the maximum degree in the graph) for vertex updates presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and provide a series of deterministic dynamic approximation schemes. For uniform rectangles, we first give an algorithm that maintains a 4-approximate Max-IS with O(1) update time. In a subsequent algorithm, we establish the trade-off between approximation quality 2(1 + k1 ) and update time O(k2 log n), for k ∈ N. We conclude with an algorithm that maintains a 2-approximate Max-IS for dynamic sets of unit-height and arbitrary-width rectangles with O(ω log n) update time, where ω is the maximum size of an independent set of rectangles stabbed by any horizontal line. We have implemented our algorithms and report the results of an experimental comparison exploring the trade-off between solution quality and update time for synthetic and real-world map labeling instances.
KW - Approximation Algorithms
KW - Dynamic Algorithms
KW - Experimental Evaluation
KW - Independent Sets
KW - Rectangle Intersection Graphs
UR - http://www.scopus.com/inward/record.url?scp=85092503869&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ESA.2020.19
DO - 10.4230/LIPIcs.ESA.2020.19
M3 - Conference contribution
AN - SCOPUS:85092503869
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 28th Annual European Symposium on Algorithms, ESA 2020
A2 - Grandoni, Fabrizio
A2 - Herman, Grzegorz
A2 - Sanders, Peter
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 28th Annual European Symposium on Algorithms, ESA 2020
Y2 - 7 September 2020 through 9 September 2020
ER -