An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase

Heejin Yoo, Joshua R. Widhalm, Yichun Qian, Hiroshi Maeda, Bruce R. Cooper, Amber S. Jannasch, Itay Gonda, Efraim Lewinsohn, David Rhodes, Natalia Dudareva

Research output: Contribution to journalArticlepeer-review

186 Scopus citations

Abstract

Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.

Original languageEnglish
Article number2833
JournalNature Communications
Volume4
DOIs
StatePublished - 25 Nov 2013
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase'. Together they form a unique fingerprint.

Cite this