An approach to the Gaussian RBF kernels via Fock spaces

Daniel Alpay, Fabrizio Colombo, Kamal Diki, Irene Sabadini

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We use methods from the Fock space and Segal-Bargmann theories to prove several results on the Gaussian RBF kernel in complex analysis. The latter is one of the most used kernels in modern machine learning kernel methods and in support vector machine classification algorithms. Complex analysis techniques allow us to consider several notions linked to the radial basis function (RBF) kernels, such as the feature space and the feature map, using the so-called Segal-Bargmann transform. We also show how the RBF kernels can be related to some of the most used operators in quantum mechanics and time frequency analysis; specifically, we prove the connections of such kernels with creation, annihilation, Fourier, translation, modulation, and Weyl operators. For the Weyl operators, we also study a semigroup property in this case.

Original languageEnglish
Article number113506
JournalJournal of Mathematical Physics
Volume63
Issue number11
DOIs
StatePublished - 1 Nov 2022
Externally publishedYes

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'An approach to the Gaussian RBF kernels via Fock spaces'. Together they form a unique fingerprint.

Cite this