An efficient strategy to develop microwave shielding materials with enhanced attenuation constant

Shital Patangrao Pawar, Viraj Bhingardive, Ajinkya Jadhav, Suryasarathi Bose

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

A mutually miscible homopolymer (here polymethyl methacrylate; PMMA) was employed to tailor the interfacial properties of immiscible polycarbonate/styrene acrylonitrile (PC/SAN) blends. In order to design materials that can shield microwave radiation, one of the key properties i.e. electrical conductivity was targeted here using a conducting inclusion; multiwall carbon nanotubes (MWNTs). Owing to higher polarity, MWNTs prefer PC over SAN which though enhance the electrical conductivity of the blends, they don't improve the interfacial properties and results in poor mechanical properties. Hence, an efficient strategy has been adopted here to simultaneously enhance the mechanical, electrical and microwave attenuation properties. Herein, the MWNTs were wrapped by PMMA via in situ polymerization of MMA (methyl methacrylate). This strategy resulted in the migration of PMMA modified MWNTs towards the blend's interface and resulted in an effective stress transfer across the interface leading to improved mechanical and dynamic mechanical properties. Interestingly, the bulk electrical conductivity of the blends was also enhanced, manifesting the improved dispersion of the MWNTs. The state of dispersion of the MWNTs and the phase morphology were assessed using scanning electron microscopy. The microwave attenuation properties were evaluated using a vector network analyzer (VNA) in the X and Ku-band frequencies. The blends with PMMA wrapped MWNTs manifested a -21 dB of shielding effectiveness which suggests attenuation of more than 99% of the incoming microwave radiation. More interestingly, the attenuation constant could be tuned here employing this unique strategy. This study clearly opens a new tool box in designing materials that show improved mechanical, dynamic mechanical, electrical conductivity and microwave shielding properties.

Original languageEnglish
Pages (from-to)89461-89471
Number of pages11
JournalRSC Advances
Volume5
Issue number109
DOIs
StatePublished - 1 Jan 2015
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Chemical Engineering

Fingerprint

Dive into the research topics of 'An efficient strategy to develop microwave shielding materials with enhanced attenuation constant'. Together they form a unique fingerprint.

Cite this