An estimate for the number of eigenvalues of a Hilbert–Schmidt operator in a half-plane

Research output: Contribution to journalArticlepeer-review

Abstract

Let A andÃbe Hilbert–Schmidt operators. For a constantr >0, let i+(r, A) be the number of the eigenvalues of A taken with their multiplicities lying in the half-plane {z ∈ C: ℜz > r}. We suggest the conditions that provide the equality i+(r,Ã) =i+(r, A).

Original languageEnglish
Pages (from-to)7-14
Number of pages8
JournalFunctiones et Approximatio, Commentarii Mathematici
Volume62
Issue number1
DOIs
StatePublished - 1 Jan 2020

Keywords

  • Eigenvalues
  • Hilbert–Schmidt operators
  • Inertia
  • Matrices
  • Perturbations

ASJC Scopus subject areas

  • Mathematics (all)

Fingerprint

Dive into the research topics of 'An estimate for the number of eigenvalues of a Hilbert–Schmidt operator in a half-plane'. Together they form a unique fingerprint.

Cite this