TY - JOUR
T1 - An evaluation of weather radar adjustment algorithms using synthetic data
AU - Silver, Micha
AU - Karnieli, Arnon
AU - Marra, Francesco
AU - Fredj, Erick
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/9/1
Y1 - 2019/9/1
N2 - Adjustment of weather radar estimates using observed precipitation has been an accepted procedure for decades. Ground observations of precipitation typically come from rain gauges, but can also include data from diverse networks of sensors, with different levels of reliability. This study presents a standardized framework for evaluating adjustment algorithms using synthetically constructed, but realistic, rain grids and weather radar rainfall. Ground observation points are randomly placed throughout the synthetic storm domain and the precipitation for each sensor is extracted from the true rain. Then a subset of the sensors are defined as unreliable, and a log-normal error factor is applied at those locations. This double network of rain sensors could be applicable, for example, when rainfall is derived from signal attenuation between commercial microwave link (CML) antennas. Past research has tested CML observations as a source of precipitation data and validated various radar adjustment algorithms. However, a comprehensive evaluation of adjustment algorithms using accurate gauge data mixed with CML observations at different densities is lacking. Five adjustment algorithms are applied to the synthetic radar grid: Mean Field Bias (MFB), a Multiplicative algorithm, Mixed (additive and multiplicative), Conditional Merge (CondMerge) and Kriging with External Drift (KED). Generation of the synthetic framework, and application of the adjustment algorithms is repeated for 150 realizations. Comparison of coefficient of determination (R2), root mean square error and linear regression for all adjustment procedures over all realizations indicates the following results. Only MFB and KED adjustments performed well when using accurate gauges. The kriging based KED was able to achieve good adjustment also with the addition of error-prone sensors. CondMerge and the Mixed and Multiplicative, however, resulted in poorer adjustments.
AB - Adjustment of weather radar estimates using observed precipitation has been an accepted procedure for decades. Ground observations of precipitation typically come from rain gauges, but can also include data from diverse networks of sensors, with different levels of reliability. This study presents a standardized framework for evaluating adjustment algorithms using synthetically constructed, but realistic, rain grids and weather radar rainfall. Ground observation points are randomly placed throughout the synthetic storm domain and the precipitation for each sensor is extracted from the true rain. Then a subset of the sensors are defined as unreliable, and a log-normal error factor is applied at those locations. This double network of rain sensors could be applicable, for example, when rainfall is derived from signal attenuation between commercial microwave link (CML) antennas. Past research has tested CML observations as a source of precipitation data and validated various radar adjustment algorithms. However, a comprehensive evaluation of adjustment algorithms using accurate gauge data mixed with CML observations at different densities is lacking. Five adjustment algorithms are applied to the synthetic radar grid: Mean Field Bias (MFB), a Multiplicative algorithm, Mixed (additive and multiplicative), Conditional Merge (CondMerge) and Kriging with External Drift (KED). Generation of the synthetic framework, and application of the adjustment algorithms is repeated for 150 realizations. Comparison of coefficient of determination (R2), root mean square error and linear regression for all adjustment procedures over all realizations indicates the following results. Only MFB and KED adjustments performed well when using accurate gauges. The kriging based KED was able to achieve good adjustment also with the addition of error-prone sensors. CondMerge and the Mixed and Multiplicative, however, resulted in poorer adjustments.
KW - Commercial microwave links
KW - Gauges
KW - Rainfall
KW - Synthetic model
KW - Weather radar
UR - http://www.scopus.com/inward/record.url?scp=85067920238&partnerID=8YFLogxK
U2 - 10.1016/j.jhydrol.2019.06.064
DO - 10.1016/j.jhydrol.2019.06.064
M3 - Article
AN - SCOPUS:85067920238
SN - 0022-1694
VL - 576
SP - 408
EP - 421
JO - Journal of Hydrology
JF - Journal of Hydrology
ER -