Abstract
Stochastic (a.k.a. Markov) Games pose many unsolved problems in Game Theory. One class of stochastic games that is better understood is that of Common Interest Stochastic Games (CISG). CISGs form an interesting class of multi-agent settings where the distributed nature of the systems, rather than adverserial behavior, is the main challenge to efficient learning. In this paper we examine three different approaches to RL in CISGs, embedded in the FriendQ, OAL, and Rmax algorithms. We show the performance of the above algorithms on some non-trivial games that illustrate the advantages and disadvantages of the different approaches.
Original language | English |
---|---|
Pages (from-to) | 75-86 |
Number of pages | 12 |
Journal | Lecture Notes in Computer Science |
Volume | 3201 |
DOIs | |
State | Published - 1 Jan 2004 |
Event | 15th European Conference on Machine Learning, ECML 2004 - Pisa, Italy Duration: 20 Sep 2004 → 24 Sep 2004 |
ASJC Scopus subject areas
- Theoretical Computer Science
- Computer Science (all)