Abstract
Electrochemical impedance spectroscopy (EIS) of aqueous-electrolyte supercapacitors can shed light on the physical processes occurring within the cell, given a proper analysis technique. Impedance Spectroscopy Genetic Programming (ISGP) is a novel technique to analyze EIS data. ISGP finds a functional form of the distribution of relaxation times utilizing genetic algorithm and offers a detailed quantitative analysis. In this work, EIS data of aqueous-electrolyte supercapacitors were analyzed by transforming the data to complex capacitance representation. A distribution function of relaxation times (DFRT) model was obtained, comprised of two peaks, each correlated with a different physical process (diffusion and EDLC formation). Two cell configurations were examined and the differences regarding capacitance distribution and diffusion rates are presented.
Original language | English |
---|---|
Pages (from-to) | 311-314 |
Number of pages | 4 |
Journal | Solid State Ionics |
Volume | 288 |
DOIs | |
State | Published - 1 May 2016 |
Externally published | Yes |
Keywords
- Aqueous supercapacitors
- Complex capacitance
- Distribution of relaxation times
- Impedance spectroscopy
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics