Abstract
Spherical loudspeaker arrays have been recently studied in applications requiring directional sound sources in three dimensional space. Directivity of sound radiation, or beamforming, was achieved by driving each loudspeaker unit independently, where the design of beamforming weights was typically achieved by numerical optimization with reference to a given desired beam pattern. This is in contrast to the methods already developed for microphone arrays in general and spherical microphone arrays in particular, where beamformer weights are designed to satisfy a wider range of objectives, related to directivity and robustness, for example. This paper presents the development of analytical, physical-model-based, optimal beamforming framework for spherical loudspeaker arrays, similar to the framework already developed for spherical microphone arrays, facilitating efficient beamforming in the spherical harmonics domain, with independent steering. In particular, it is shown that from a beamforming perspective, the spherical loudspeaker array is similar to the spherical microphone array with microphones arranged around a rigid sphere. Experimental investigation validates the theoretical framework of beamformer design.
Original language | English |
---|---|
Pages (from-to) | 2247-2250 |
Number of pages | 4 |
Journal | Proceedings of Forum Acusticum |
State | Published - 1 Dec 2011 |
Event | 6th Forum Acusticum 2011 - Aalborg, Denmark Duration: 27 Jun 2011 → 1 Jul 2011 |
ASJC Scopus subject areas
- Acoustics and Ultrasonics