Abstract
This work analyzes laser communication between a cluster of nanosatellites, which is a concentrated formation of small lightweight satellites and a ground station. The scenario under consideration is a cluster of nanosatellites communicating by means of a laser beam with a detector array receiver that is located on the earth's surface and equipped with a common optical system for all incoming beams. The beams are concentrated to spots over the detector plane by the receiver's optics. The detector array enables the ground station to communicate with a tight concentration of the nanosatellites, which reduces system complexity and cost. A critical parameter that determines the successful receipt and subsequent decoding of a transmitted signal for a given configuration is the angular separation between the satellites within the cluster. This separation must be retained to prevent critical overlapping of the spots on the detector's surface. The maximum allowable overlapping is calculated in terms of given bit-error rate. The spatial spreading of the beams, caused by scattering from aerosols in different layers of the atmosphere, is calculated for the case of single scattering. A stratified model of the atmosphere is used. Turbulence influences the beam width, especially for the case of short exposure, and is primarily caused by temperature changes, which result in fluctuations in the refractive index. In this research, a new approach is adopted for analyzing communication network performance through the atmosphere by applying optical-transfer function (OTF) concepts used in imaging and remote sensing. We evaluate the effectiveness of this new approach in applications where spatial spread between the users is very important.
Original language | English |
---|---|
Pages (from-to) | 447-455 |
Number of pages | 9 |
Journal | Journal of Lightwave Technology |
Volume | 21 |
Issue number | 2 |
DOIs | |
State | Published - 1 Feb 2003 |
Keywords
- Detector arrays
- Laser communication
- Nanosatellites
- Optical transfer function
ASJC Scopus subject areas
- Atomic and Molecular Physics, and Optics